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Notes 

A Numerical Approach to Principal Value integrals 
in Dispersion Relations 

In this note we describe a convenient and rapidly convergent numerical procedure 
for the evaluation of principal value integrals, which arise in a dispersion theoretical 
treatment of the coupled channel scattering problem. 

The knowledge of the set of partial wave phaseshifts 6,(E) suffices for the 
construction of the total scattering amplitude T(E) [ 11. The causality principle and 
plausible behavior of the potential V(r) guarantee analyticity of the partial wave 
phaseshifts in the upper half plane of complex energy. This permits the use of the 
powerful theory of analytic functions and establishes integral relations between 
the real and imaginary parts of the phaseshifts, 6,(E), which correspond to 
dispersive and absorptive effects, respectively. 

We are presently working on a novel approach [2] to the scattering problem 
for n coupled two body channels. In the course of the analysis repeated integrals 
of the form 

appear. Here 6,(k2), rSI(kz) stand for the real and imaginary parts of the I-th partial 
wave phaseshift, P(k2) = 6g’(k2) + i8jz’(k2). In the following we suppress the 
partial wave label l, and will confine ourselves to s wave (I = 0) phaseshifts. 
Relations (1) areknown as Hilbert transforms in the mathematical literature 
and follow from the analytic properties of the phaseshift. If, for example, the 
absorptive part 6,(k2) is given over the whole range of scattering energies from 
the inelastic threshold (taken to be 0 in (1)) to infinite energy, the total phaseshift 
is given immediately by 

We note k = +(k2 + ie)l12 takes care of the elastic branch-cut 0 < k2 < co 
while the integral contains the branch-cut due to the inelastic channel, opening 
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up at the inelastic threshold. Relation (la) was given and applied by Frazer and 
Ball [3] to correct the elastic scattering amplitude for inelastic effects, which were 
assumed known in the form of the total inelastic cross-section. Use of the formal 
identity 

1 
k’2 - k2 - ir = irr6(k’2 - k2) + P k,2 1 k2 

then leads to the separation of the real and imaginary parts of the phaseshifts, i.e., 

We note here, that similar principal value integrals occur in the Feynman 
formulation of perturbation theory in terms of propagators and in the solution 
of the Lippman-Schwinger [4] equations. 

In our approach to the many coupled channel problem, an initial approximation 
is made for the integrands S:“(kf2), 6$)(kr2), in (l), which is based on perturbation 
theory (e.g. 1st Born approximation T = V). Equations (1) are then solved 
iteratively until stability is reached. As a consequence of our basic equations (1), 
repeated principal value integrations have to be performed numerically. 

A simpleminded attempt to use Laguerre integration for the semiinfinite inte- 
gration interval fails due to the asymmetric distribution of the Laguerre roots 
with respect to the apparent singularity at k12 = k2. After some experimentation 
with resealing the roots, which did not much improve the accuracy of the result, 
we discovered a much more straightforward and satisfactory procedure. 

As mentioned, our difficulty with finite numbers of gridpoints stem from the 
dominant influence of the factor llk’2 - k2, which should be treated symmetrically 
We therefore divide the integration interval after normalizing variables by x = k’/k 
into two regions 0 9 x < 1 - E, 1 + E < x < co as in the definition of the 
Cauchy principal value. Next we map the second interval by inversion y = l/x 
into the first to obtain 

(5) 

We note with satisfaction, that the integrand is manifestly well-behaved at the 
singularity x = 1 and tends to 2k6!?‘(kz). (In this connection see the recent note 
by I. H. Sloan [5] in this journal). 

In order to use Gaussian quadrature we once again change variables to obtain 
a symmetric integration interval. 
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Our final result is then obtained in the form 

w4 = ; ,1, (y +%2 _ 4 [ ( 
$0) k2(Y + 1)” 
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The wi , yd are the weights and roots used for a 2n point Gaussian quadrature [6]. 
In Table I we demonstrate our use of (6) for two cases: 

I. $‘(k2) = -$& 
(7) 

II. Q’(P) = - ; log [l - ($)2 log (1 + G)] 

TABLE I 

Case I* kP$F) = L 
. I k2 + b2 

(p = 0.1; b2 = 1.01); 

n Number of Gridpoints in Gaussian Quadrature; 

k n=2 

.3 -1.375881 

.6 -2.175505 

.9 -2.440125 
1.5 -2.286489 
2.4 - 1.796622 

FZ=4 n=8 Exact 

-1.336933 - 1.337852 -1.337851 
-2.152076 -2.152233 -2.152233 
-2.434552 -2.434536 -2.434537 
-2.270760 -2.270799 - 2.270800 
-1.751299 - 1.752361 -1.752362 

Case II: 6y’(k2) = -0.25 log 1 + k log 1 + 7 [ (‘)’ ( 4k2)] (/L =O.l; b2 = 1.01) 

6,(k2) x lo3 
m $‘(kf2) dk’2 

*R(k’) = ; p j-, k,(k’z _ k2) 

k n=2 n=4 n=8 n = 20 

.3 3.45803 3.24849 3.26072 3.26111 

.6 2.47818 2.47410 2.47790 2.47803 

.9 7.54994 7.14626 7.17044 7.17104 
1.5 -1.46368 -1.56638 -1.56166 -1.56163 
2.4 -2.74110 -2.66423 -2.67511 -2.67518 
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For Case I, we can calculate the principal value integral trivially by contour 
integration. In both cases, we note the rapid convergence for very small numbers 
of gridpoints. The calculations were performed on the Call/360 remote terminal 
system, utilizing simple programs written in BASIC CODE and took negligible 
time. More detailed results on the coupled many channel problem will be published 
elsewhere in the near future. 
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